Y -meshes and generalized pentagram maps

نویسندگان

  • Max Glick
  • Pavlo Pylyavskyy
  • James Haglund
چکیده

We introduce a rich family of generalizations of the pentagram map sharing the property that each generates an infinite configuration of points and lines with four points on each line. These systems all have a description as Y -mutations in a cluster algebra and hence establish new connections between cluster theory and projective geometry. Résumé. Nous introduisons une famille de généralisations de l’application pentagramme. Chacune produit une configuration infinie de points et de lignes avec quatre points sur chaque ligne. Ces systèmes ont une description des Y -mutations dans une algèbre amassée, un nouveau lien entre la théorie d’algèbres amassées et la géométrie projective.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glick’s Conjecture on the Point of Collapse of Axis-aligned Polygons under the Pentagram Maps

The pentagram map has been studied in a series of papers by Schwartz and others. Schwartz showed that an axis-aligned polygon collapses to a point under a predictable number of iterations of the pentagram map. Glick gave a different proof using cluster algebras, and conjectured that the point of collapse is always the center of mass of the axis-aligned polygon. In this paper, we answer Glick’s ...

متن کامل

Integrable Cluster Dynamics of Directed Networks and Pentagram Maps

The pentagram map was introduced by R. Schwartz more than 20 years ago. In 2009, V. Ovsienko, R. Schwartz and S. Tabachnikov established Liouville complete integrability of this discrete dynamical system. In 2011, M. Glick interpreted the pentagram map as a sequence of cluster transformations associated with a special quiver. Using compatible Poisson structures in cluster algebras and Poisson g...

متن کامل

Solutions to the T-Systems with Principal Coefficients

The A∞ T-system, also called the octahedron recurrence, is a dynamical recurrence relation. It can be realized as mutation in a coefficient-free cluster algebra (Kedem 2008, Di Francesco and Kedem 2009). We define T-systems with principal coefficients from cluster algebra aspect, and give combinatorial solutions with respect to any valid initial condition in terms of partition functions of perf...

متن کامل

Higher pentagram maps, weighted directed networks, and cluster dynamics

The pentagram map was introduced by R. Schwartz about 20 years ago [25]. Recently, it has attracted a considerable attention: see [11, 16, 17, 20, 21, 22, 26, 27, 28, 29, 30] for various aspects of the pentagram map and related topics. On plane polygons, the pentagram map acts by drawing the diagonals that connect second-nearest vertices and forming a new polygon whose vertices are their consec...

متن کامل

On Generalizations of the Pentagram Map: Discretizations of AGD Flows

In this paper we investigate discretizations of AGD flows whose projective realizations are defined by intersecting different types of subspaces in RP. These maps are natural candidates to generalize the pentagram map, itself defined as the intersection of consecutive shortest diagonals of a convex polygon, and a completely integrable discretization of the Boussinesq equation. We conjecture tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017